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Abstract

This is a thesis for a Swedish licentiate degree. It consists of three papers along with a
general introduction. The work described is the construction of a model of motion direction
detection by the use of a neural network. The model is unusual in that it does not make
use of any intermediate units. Instead, the input units are directly connected to the units
that constitutes the detectors. The capacity of the network to detect motion is an emergent
phenomenon which is dependent on the presence of spontaneous activity among the units.
In addition to a presentation of the model and some results from simulations, it is discussed
how the methodology can be used in applications other than motion detection.





PREFACE

This work is a thesis for a degree of “filosofie licentiat” which is a Swedish degree between
a Master of Science and a PhD. The thesis consists of three papers along with a general
introduction. The three papers serve as a summary of the research of the author. The introduction
serves mainly to introduce the reader to the problems that are discussed in the papers.

The papers have the following origin:

� Robert Pallbo, “Visual motion detection based on a cooperative neural network architec-
ture”, in Scandinavian conference on artificial intelligence – ’93, E. Sandewall and C. G.
Jansson (ed.), pp. 193–201, IOS Press, 1993.

� Robert Pallbo, “Motion Detection – A neural model and its implementation”, LUCS
Minor, 1, Lund University Cognitive Science, 1994.

� Robert Pallbo, “Ontogenesis in neural networks”, Lund University Cognitive Studies, 24,
1993.
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Part I

Introduction





1 BACKGROUND

Even if this work is mainly about motion detection, as the title suggests, my personal interests
are not so much directed to the problems of detecting motion per se. Rather, my interests have
been focused on the method. Initially, I wanted to study how time could be handled by neural
networks. A search through the literature revealed that the time dimension seemed in every case
to be transformed in one way or another to the spatial domain. As I wanted to avoid such an
approach, I tried to define a minimal problem in which time is an important aspect. That was
how I came to start with motion detection models.

The model that I present here, does not transform time into a spatial problem. Time is
represented by time. This turned out to be a natural choice. Further, there is no final output.
The network operates in a continuum of input images. This feature was actually used in the
design of the model. In addition, I also would like to stress that the activity in the network is
not caused by the input – all motion detection that occurs are generated internally.

The work that has been done have been both theoretical and technical in nature. The theoretical
part consists of the creation of the model and its definition. The technical part consists of the
construction of computer programs able to simulate the model. Several simulators have been
constructed throughout this work. Further, a lot of time has been spent to run these simulators
with various inputs under various conditions.

Three papers are supplied to serve as a summary of the work done. The first paper outlines
the general idea. At the time this paper was produced, only preliminary computer simulation
had been made on artificially constructed stimuli.

The second paper, a technical report, describes how a more complete implementation was
made. In these simulations, video recordings were used as input. Further, this paper also
describes some experiments that were made on this implementation to study the effects of
adjusting the parameters.

The last paper is a first attempt to generalize the approach beyond motion detection and
perception. This work is only in its early stages and will be the subject of my research for a
doctoral degree.

In addition to these papers, I will also try to introduce the reader to the concept of neural
networks, and the problem of detecting motion in a visual scene. At the end of the discussion, I
will discuss the methodology in more general frames.

2 NEURAL NETWORKS

A neural network can be understood as two interacting dynamical systems (Fig. 1) (Ivan Havel,
personal communication). One is the activity patterns of the units. The other one is the
connection strength configuration defining the architecture. The former undergoes fast changes
– the activity pattern typically changes from one iteration1 in the network to another. The latter
is adapting much slower, only minor changes are made at each iteration.

The two systems interact and influence each other. The activity patterns affect the connection
configuration, and the connection configuration in turn affects the activity patterns. The former
interaction we call plasticity, the latter activity transferring. Below, we will first see how a unit

1We will in this introduction only consider neural networks that operate in discrete time.
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Figure 1: A neural network can be viewed as two interacting dynamical systems.

in the network operates and how they can be connected to form networks. Thereafter, various
forms of learning will be described, some with the help of examples.

2.1 UNITS

A neural network consists of one or more connected units. The operation of the units is
fundamental to the operation of the entire system. I will therefore give a brief description on
how these units are implemented.

The basic model of the unit originates from 1958 – Rosenblatt’s units in the “perceptron”. The
units he used are simple, but adaptive, devices. Each unit receives signals, (x1, ..., xn), from other
units or from the environment. These signals are multiplied by weights, (w1, ..., wn), associated
with the connections and the sum is calculated. If this sum exceeds a pre-specified threshold,

�
,

the unit generates a positive output, otherwise the output is zero (Fig. 2). We write:

y = f (
n�

i=0

wixi � �
),

where

f (z) =

�
+1 if z � 0

0 otherwise
.

These simple devices are able to perform categorization by dividing the input space by a
hyper-plane. In Figure 3 this is shown for the case of two input signals.

To enable learning, the weights can be modified by means of the delta rule (Rumelhart et al.,
1986a). The application of this rule requires that the desired output from each unit is known
after each presentation. To adapt the weights, the following iteration formula is repeated for
each connection:

wi(t + 1) = wi(t) + � (d(t) � y(t)) � xi(t)

where d(t) is the desired output, y(t) is the actual output, and 0 < � < 1 is a gain term. If
d(t) = y(t) there will be no changes of the weights. If d(t) �=y(t), the change will be � xi(t).
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Figure 2: The unit integrates its weighted inputs and generates an output.

x1

x2

Figure 3: A single unit is able to divide the input space into two categories. All signals at the left of the
boundary line will belong to one category and all signals at the right will belong to the other. Depending
on which of these two categories the input belongs to, the unit will generate +1 or 0 as output.

2.2 NETWORKS

The number of units used in a neural network are frequently more than one. A main reason
for this is that multi-unit networks allows more complex decision regions (Gibson and Cowan,
1990), and therefore more advanced categorizations.

A network is formed by connecting the output signals of the units as input signals of other
units. In addition, external input signals can be used. Such input is called the input of the
network. In a similar way, some of the output signals of the units can be used as the output of
the network. The units that are connected to the networks input is usually called input units.
The units that constitutes the output of the network is called output units. All other units are
called hidden units. The connections that are present in the network is called the (connection)
architecture, and the set of strengths associated with each of these connections the connection
strength configuration.

It is possible to construct a neural network where all units are mutually interconnected. In
fact, all neural networks could be considered to be fully connected if the unused connections
are given a strength that is fixed to zero. However, the units in a neural network are usually
organized in layers. One example of such an architecture is the popular feed-forward network
(frequently used with the back-propagation learning rule). Figure 4 illustrates an example of a
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feed-forward network architecture.

Figure 4: A feed-forward network with three layers.

In a feed-forward network the input signal is presented to the first layer of units (the bottom
layer in Figure 4). The units in this layer integrate their weighted input signals and generates an
output which in turn is propagated to the next layer. After a while, the activity has reached the
final layer (the top layer in Figure 4), and the signals generated by these units will be taken as
the final output of the computation of the network.

2.3 LEARNING

The way in which a neural network will respond to a certain input signal, depends on the weights
associated with each connection in the network. If the weights are changed, the behaviour (i.e.,
the output) of the network will also change.

This basic property is the ground for adaption in a network. The learning algorithm of a neural
network describes how the weights are to be modified. Usually, this occurs during a learning
phase of the network. Before the network is trained during the learning phase, the weights in
the network are given random values. Then, examples of input are presented to the network and
the learning algorithm will use these examples, and optionally some additional information to
gradually modify the weights. The number of examples that are presented to a network during
the learning phase usually ranges from a few dozen to hundreds of thousands depending on the
approach and the complexity of the task.

The learning algorithms of neural networks can be distinguished in two categories. One
category is algorithms that use additional information, i.e., supervised learning, and another
is algorithms that use no other information than the examples themselves, i.e., unsupervised
learning. Below, a brief description of one example for each of these categories will be given.
A full review is beyond the scope of this text, and the interested reader is directed to the large
amount of literature that is available about this field.

2.3.1 Supervised learning

The most well-known supervised learning algorithm is back-propagation, which is also known
as the generalized delta rule (e.g., Rumelhart et al., 1986b). It is associated with multi-layer
feed-forward networks of the kind illustrated in Figure 4. Typically, the network consists of
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three layers of units; one input layer, one hidden layer, and one output layer. The hidden layer
is called “hidden” because it has no direct connections with neither the input signals, nor the
output and is thus hidden from an external observer. If the network consists of four layers, there
would be two hidden layers, and so on.

The additional information required by a supervised learning algorithm is the desired output.
The algorithm compares the desired output with the actual output and modifies the weights in
such a way that the actual output will be more in correspondance with the desired output if it is
presented a second time.

This might sound fairly simple, but it is complicated by the fact that the desired output is
known only for the output layer. What the desired “output” of the hidden layers (the “input” to
the output layer) should be, the algorithm must find out itself. How this is done will be described
below.

First, the weights of the input to the output units are adjusted:

wij(t + 1) = wij(t) + ��� jyi

where � is a small gain parameter that determines the speed of the learning, and � j is an error
parameter determined by:

� j = f �j (z)(dj � yj),

where dj is the desired output and yj is the actual output. The other connections, in the hidden
layers, are adjusted in the same way but the error parameter for each unit is computed by:

� j = f �j (z)
�

k

� kwjk

where k is an index over the units in the layer above (after) the target unit j. In this way, the
errors of the output units are recursively propagated backward in the network.

As the function f (z) needs to be derivable, the threshold function used in section 2.1 will not
do. An alternative is to use the sigmoid function (Fig. 5),

f (z) =
1

1 + e � z
,

which has the derivative,
�

f�
yj

= yj(1 � yj), where yj =
n�

i=0

wijxi � �
.

It has been shown (Rumelhart et al., 1986b) that the adaption of the weights, in the manner
described above, will minimize the square of the error between the desired and the achieved
output. We can think of the error for each pattern, p, as energy using:

Ep =
1
2

�
j

(dpj � ypj)2.

The procedure will then minimize the error of the total population of patterns,

E =
�

p
Ep.
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Figure 5: The sigmoid function.

A feed-forward network of this kind can map any function2 from one finite dimensional space
to another with desired accuracy (Hornik et al., 1989). Furthermore, using the back-propagation
algorithm, it can learn such a mapping (White, 1990). This does not, however, say anything
about in what degree the network has found any general structure in the data. There is always
a risk that the network will become an “idiot savant”, and memorize only the data set used for
learning. To avoid this, the number of units in the hidden layer is usually limited in number, so
that the number of hidden units will be fewer than the number of input and output units. The
effect is that the network then has to generalize in order to learn a set of pattern. There will
simply not be enough units to memorize every input-output pair.

2.3.2 Unsupervised learning

When learning is not supervised, the system receives no information of what the desired output
should be. Hence, the output produced by such networks have an arbitrary representation and
must be interpreted by an observer. The network will use the input per se to control the learning
process. This usually means that any structural relationships in the input patterns will be evident
in the output, and, typically, it is structural information the designer desires.

Even if a network in itself is run without supervision, it would not be fair to say that the
usage of such systems is unsupervised. In most cases, the network has to be carefully designed,
and many versions evaluated, before the desired output is achieved (which is also the case in
supervised learning). However, an important distinction from the case of supervised learning is
that the desired result does not need to be precisely defined. The designer might be interested to
see if there are any learnable structural relationships in the raw data.

A popular, and widely used, unsupervised network is the self-organizing map (SOM), or, as
it is more known, the Kohonen network (Kohonen, 1989, 1990). This category of networks
consists of one layer of topologically arranged units. Every unit in the network receives signals
from each of the input sources.

In a Kohonen network, we want the similarities in the (usually) high dimensional input to be
reflected as distances in the (usually) low dimensional topology. Similar categories should be
represented by nearby units. This is achieved by associating a topological neighbourhood, N i(t),
to each unit. At each presentation of input signals, a distance, d, between the weight vector,

2Any Borel measurable function, that is.
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Figure 6: A Kohonen network with one-dimensional topology and two-dimensional input.

(w1j, ..., wmj), and the input vector, (x1, ..., xm), is determined for each of the N units, e.g.,

dj =
N � 1�
i=0

(xi(t) � wij(t))2.

We then select the unit with the minimal distance and updates the weight vector of that unit and
those in its neighbourhood (Fig. 7) by,

wij(t + 1) = wij(t) + � (t)(xi(t) � wij(t)).

The weight vectors of the units outside the neighbourhood is not updated.

Figure 7: The neighbourhood, Ni (gray circles) of the unit i (black circle). Note that the neighbourhood
function defines the topological dimension of the network. In this figure it is two-dimensional.

To make the learning converge, the gain factor, � (t), should be a decreasing function of time.
Likewise, the topological neighbourhood, Ni(t), should also decrease in size. These parameter
properties will make the initial learning coarser, and the final learning more precise. After a
while, the gain factor will reach zero and no more learning will take place. The result must
be evaluated and interpreted. If the result is satisfactory, the network can be employed in an
application.

2.4 DISTRIBUTED REPRESENTATION

In the field of artificial intelligence, knowledge is traditionally represented by symbols (Newell
and Simon, 1976). These are arbitrarily chosen and carry no information per se about the
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represented entities. Relations between the entities must be captured by arranging the symbols
in structures (e.g., semantic networks).

Even if knowledge could be represented the same way in neural networks, by letting one unit
represent some specific knowledge, neural networks offer another alternative for representation.
Knowledge is separated into knowledge atoms. Each unit will represent one such atom. More
complex knowledge is represented by a set of knowledge atoms. This methodology is called
distributed representation. The distinction between distributed and symbolic representation is
fuzzy, however. The more abstract the knowledge atoms are, the more similar they will be to
symbols.

We can think of the activity state (the pattern of active units) in a network as a string of bits
that can be either on or off. A specific state can then be represented by a unique string. In
this way, the knowledge representation in the neural network is very similar to the address of a
symbol in a traditional artificial intelligence system. There is, however, one important respect –
the string in the neural network system is simultaneously both the address and the content. This
feature has some important advantages.

First, it makes the representation resistant to damage. If one, or a few, of the bits in the string
are changed, the content is still similar to the original.

Second, “[distributed representations] automatically give rise to generalizations” (Hinton
et al., 1986 p. 82). This is caused by the fact that two similar entities will have similar activity
patterns. If something is learned about one of the entities, it will strengthen the connections
between the active units representing that entity and the active units representing the new
knowledge. As the two similar entities have a lot of units in common, the connections between
the second entity and the new knowledge will increase in strength as well.

Finally, if we observe two different states in the neural network, representing two different
entities or situations, we can say something about how they relate to each other. The more
they overlap in their activity patterns, the more similar they are. This cannot be said about two
symbols in AI without consulting the appended structure.

There are not only advantages with distributed representations, but also disadvantages. The
most important is the conflicts that may arise when two entities are to be represented at the same
time. Consider, for instance, that we wish to represent a blue car and a red bike simultaneously.
We will then activate the pattern for blue, for car, for red and for bike. If we suppose (a bit
unrealistic) that the activity pattern for car and bike is not in conflict and do not overlap, we
still have a problem. There is no way to tell whether it is the car that is blue or if it is the bike.
Such conflicts must somehow be avoided. There are several approaches to this problem (e.g.,
Balkenius, 1992). I will not discuss them here, but just mention that they all complicate the
initially rather simple representation in one way or another.

A second problem, that distributed representation shares with symbol systems, is the ground-
ing problem (see Harnad, 1990). The meaning or interpretation of a representation is attached by
an external observer. To avoid this problem, the representations must somehow be grounded in
the physical world. Some researchers have even argued that there should be no representations
at all, only connections to the physical world (e.g., Brooks, 1990).

Neural networks appear to offer a perfect platform for this kind of physical grounding – all
we have to do is to connect the input units to sensors and the output units to effectors. There
are problems with such an approach, however. In most applications, the input signals to the
network have been either carefully pre-processed sampled data, or artificially constructed data.
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In addition, the output is usually presented at an abstract level that needs posterior interpretation.
As long as data has to be prepared and adjusted, neural networks offer no real solution to the
grounding problem.

2.5 RECURRENT NETWORKS

In the networks that we have considered so far, the generated activity pattern of the units depends
on the history of the network through the influence of the architecture and the connection
strengths. There exists, however, another class of networks that have activity patterns that more
directly depend on the history of the network – recurrent networks. In these systems, the current
activity pattern will influence the next such pattern. That is, the activity pattern will depend on
both the architectural configuration as well as the previous activity pattern along any external
input.

Recurrent networks can be subdivided into two categories. The first kind is what is sometimes
called auto-associators (Kohonen, 1989), or fully connected networks. In these systems each
unit is connected to all the other units and the network thus consists of one layer. Typically,
the recurrent nature of the auto-associator is used to reach a stable state of the activity pattern.
An initial pattern is presented to the network and the network will after a few iterations reach a
stable state. The state that it will reach is the “closest” in some respect or the one that has least
energy. Hence, auto-associators use time only as a mean to converge into a stable state in which
it then resides.

The second kind of recurrent networks uses the old state of activity pattern to generate a new
pattern. This makes it possible to generate a whole sequence of patterns. One way to construct
such a network would be to use the feed-forward network described above, and use the output as
part of the input signal. This kind of network is usually called Jordan networks (Jordan, 1986).
Another possibility is to connect the output from the hidden units to the input. In this case, we
will get an Elman network (Elman, 1990). An important aspect of the Elman network is that
the reused signals from the hidden layer are not determined by the external user, as in the case
of the Jordan network, but are determined by the network itself.

Any recurrent network of this second kind might learn and reproduce sequences. They can be
used to forecaste a sequence, or to find structure in the temporality of a set of sequences. They
have one flaw in common, however – they are all supervised. This is not an objective drawback,
however, but depends on the intention of the user.

The intention of the current work has been more toward constructing a network that can
deal with time and still be self-organizing, or – at least – have the potential to be so. The
present model of motion detection outlined in this thesis, is not self-organizing. In the final
discussion of this introduction, I will however argue that the proposed model has the potential
to be self-organizing.

2.6 NEURAL NETWORKS AND THE BRAIN

Sometimes it is stated that neural networks operate in a manner “similar to the brain”. This is
however an overstatement in at least three respects. First, the units in neural networks are much
simpler than the neurons in the brain. Second, the number of neurons in the brain is usually
estimated to be between 1011 and 1012. As a comparison, the motion detecting network presented
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in this thesis consists of 300 000 units – a number considered very large in the field of neural
networks. Finally, our knowledge about the processes in the brain is only fragmentary. To state
that neural networks operate in a manner similar to the brain, suggests a fuller understanding of
the brain than what we have to date.

3 VISUAL MOTION DETECTION

There are very good reasons for detecting motion in a visual scene. In the animal kingdom,
anything that moves is worthy attention as a moving object is likely to be either a predator or
a prey. It is no coincidence that some species can see nothing but moving objects. In artificial
systems, motion detection is useful as well. The supervision of prohibited areas is only one
example where motion detecting devices can play a crucial role. Another example where motion
detection is fundamental, is visually guided mobile robots, even though they are not as common
today.

At the first glance, the detection of motion in a visual scene appears to be a simple problem.
Partly, I guess, because this process feels so effortless and immediate in our personal perception.
But the simplicity is only illusionary, the task of detecting motion has many hidden pitfalls.

One problem that models of motion detection will encounter is the aperture problem (Marr,
1982). If motion is detected locally – seen only through a small aperture – there is no way to
tell whether a moving profile is moving perpendicular, or in any other angle, to the orientation
of the profile (Fig. 8a).

?

A B

Figure 8: Problems with local motion detection. A: The aperture problem. There is no way to
tell in which direction the motion is occurring if only a fraction of the scene is considered. B: The
correspondence problem. The items at time t (empty circles) must be matched with the items at time
t + 1 (filled circles). In the example shown, there are two ways of accomplishing a match. The items can
be matched either by the solid lines, or by the dashed lines.

Another problem emerges if the visual scene is presented as a sequence of frames in discrete
time intervals. Technically, there cannot be any motion in those frozen frames. However, we
can reconstruct the motion that has occurred between successive frames. The result of such a
procedure is known as apparent motion (Marr, 1982). The problem, then, is to tell which item
in a frame that corresponds to the items in a successive frame – the correspondence problem
(Fig. 8b). Usually, the items in a frame can match the items in the successive frame in many
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different ways. The motion detecting algorithm has to select the most plausible matching – a
task that is far from trivial.

The conclusion to draw from all this is that there exists no straight-forward approach to the
problem of motion detection. A wide variety of models have been suggested in the literature,
but as the current work is directed toward the use of neural networks, we will in the following
consider only the models belonging to this field. Typically, neural networks that detect motion
are found in the neurophysiological community. Below, the most popular such models will be
presented. Thereafter, the proposed model will be introduced.

3.1 THE VISUAL SYSTEM

Before the description of any model, it is useful to know something about the basic organization
of the visual system. This system varies between different species, but for primates it is
essentially the same.

The visual system begins with the retina in the eye. Here, the photo-sensitive rods and cones
are situated. As a consequence of the lens, each cell receives stimuli from only a fraction of the
visual scene. This sub-field is called the receptive field of a cell. Whenever light is present in
the receptive field of a rod or a cone, that cell will become active. The more light that reaches
the cell, the more intense will the activation (the membrane potential) be. Some cells are only
sensitive to a limited interval of the light spectrum, but as the current interest is not colour
perception, this will be ignored in the following.

The image that is obtained by the photo-sensitive cells is processed by other cells, also situated
in the retina. These are the ganglion cells and the intermediate bipolar, amacrine, and horizontal
cells. The result of this process is such that a ganglion cell will respond best to either a bright
dot surrounded by a dark area, or a dark dot surrounded by a bright area in its receptive field
(Fig. 9). A homogenous brightness in this field will give no response at all. This effect is similar
to what is obtained by the “mexican hat” function that is frequently used in artificial vision
systems (refer to section 3 in part III).

The axons of the ganglion cells form the optic nerve. This nerve projects mainly3 to the
lateral geniculate nucleus (LGN) in the thalamus. This site, which is organized in six layers, in
turn projects to several other areas in the brain. Furthermore, it also receives projections from
other sources than the optic nerve. What purpose all these projections have, is still unknown.
However, the optic stimuli from the retina seem to be dominant in function (but not in number).
For our purposes, it will suffice to note that the characteristics of the receptive field response are
preserved in the LGN such that the cells that form its output, have a behaviour similar to the
ganglion cells.

The primary visual cortex (Area 17), like the (neo)cortex in general, is organized into six
distinct layers. The output from the LGN terminates mainly in layer 4. The cells located here,
connect to cells in other layers of the primary visual cortex. Furthermore, the cells do also make
lateral connections (Gilbert et al., 1990). In the primary visual cortex, the characteristics of the
receptive field changes dramatically. The cells located here respond best to stimuli shaped like
a bar in the receptive field. One category of cells called simple cells responds only when the bar
is oriented in a certain angle. Another category is complex cells that respond only to moving
bars. Many of the complex cells are only selective to one direction of movement. The simple

3The retinal output also projects to the pretectum and to the superior culliculus.
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Receptors Ganglion cells LGN Visual cortexWorld

Figure 9: Outline of the primate visual system. The receptors in the retina give a stronger response the
more light that enters the eye (represented by the filled circle). The ganglion cells, also situated in the
retina, give best responses to dark dots on bright background or a bright dot on a dark background. The
ganglion cells then project to the lateral geniculate nucleus (LGN). The selectivity of the ganglion cells
is preserved. The cells in LGN then project (among other places) to the primary visual cortex. Here we
will find cells that responds to lines of a certain direction (simple cells), cells responding to lines of a
certain orientation and length (end stopped cells), cells that respond to motion (complex cells), and cells
that respond to motion in a certain direction (directional selective complex cells). The primary visual
cortex then projects to other areas of the brain, but that is beyond the current interest. From Pallbo, 1992.

cell was called simple as it was believed that their response could be obtained in one logical step
from the geniculate projection (Hubel and Wiesel, 1962; Chapman, 1991). The complex cells
were believed to require more complex curcuitry and was thus called complex.

The visual system does not end here, in fact, we have only scratched the surface. The primary
visual area project to secondary visual areas (area 18 and 19). These, in turn, contains a lot of
different areas with a complex web of interconnections (Essen et al., 1992). But these details
are not in the scope of the current interest, and, therefore, we will not consider them here.

3.2 MODELS FROM NEUROPHYSIOLOGY

The first model that was ever proposed for a motion detecting circuitry was not for complex
cells, but for cells in the rabbit’s retina (Barlow and Levick, 1965; cf. Grzywacz et al., 1991). In
opposition to primates, directionally selective cells were found at this early stage in the rabbit’s
visual system. Barlow and Levick measured the response characteristics of these cells, but were
unable to observe the underlying circuitry. As neural tissue is very obscure, we are still unable
to extract specific circuitry of larger neuronal systems in the brain. However, Barlow and Levick
constructed two hypothetical models that could explain the observations.

The two models can be thought of as two variations on the same theme. The idea is to use
two versions of the input patterns. One that is obtained at time t, and the other at time t + 1.
These two inputs then converge to the target cell which becomes directionally selective. In
one arrangement of these inputs, the delayed signal is inhibiting the target cell whereas the
un-delayed cell is excitating it (Fig 10a). If a stimulus appears first at the position of the delayed
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input and thereafter at the un-delayed position, the delayed inhibitory connection will cancel
an activation of the target cell. This direction of the stimulus is called the null direction and
the target cells will respond only to stimuli moving in the opposite direction – the preferred
direction.

In the other arrangement, both connections to the input signals are excitatory. If the target cell
requires input from both sources in order to get activated, the cell will be directionally selective
(Fig 10b). When a stimulus first appears in the delayed input position and thereafter at the
position of the un-delayed input, the two input signals will reach the target cell simultaneously
and, hence, activate the cell. If the stimulus moves in the other direction, the input signals will
reach the target cell one at a time and thus not be sufficient for triggering an activity.

➾
Null direction Preferred direction

➾

A B

∆t∆t ∆t∆t

Figure 10: Two models proposed by Barlow and Levick 1965. The idea is to use two input signals to
the target cell. These two inputs should be obtained at slightly different positions in the visual field.
Furthermore, one of the signals should be delayed by the network. A: The delayed input is inhibiting
the target cell and cancels activity caused by stimulus moving in the null direction. B: Both inputs are
excitatory and the target cell requires input from both these sources in order to become activated. This
will happen when stimuli move in the preferred direction.

3.2.1 Complex cells

The complex cells that are not directional selective can be modeled by a simple projection of
many simple cells (Hubel and Wiesel, 1962). For directional selective cells though, a model
is not as easily found. However, it is widely believed that the circuitry is of a type similar to
the model proposed for the rabbit’s retinal ganglion cells outlined above (Hubel, 1988), or at
least that some interneurons are involved (e.g., Nagano and Fujiwara, 1979). This category of
models is called correlation type motion detectors (Ullman, 1983; Borst and Egelhaaf, 1989).

Another type of models proposed as a model of direction detection is gradient schemes. In
these models, the local temporal gradient of the light intensity is compared with the spatial
gradient of the local pattern. By these measures, it is possible to derive not only the direction of
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the motion, but also the speed. These models are, however, rather complex in their computations
and have obtained limited support from empirical studies (Ullman, 1983).

3.3 A ONE-STEP MOTION DETECTOR

The absence of other competing ideas has made the correlation scheme put forward as the most
probable explanation of motion detection in the primary visual cortex.

“The main reason for thinking that complex cells may be built up from center-
surround cells, with a step in between, is the seeming necessity of doing the job in
two logical steps” (p. 78, Hubel, 1988).

“[Directional selectivity] probably cannot be explained by any simple projection of
simple cells onto complex cells, but seems to require inhibitory connections with
time delays of the sort proposed for rabbit retinal ganglion cells by Barlow and
Levick” (p. 518, Hubel, 1982).

However, there exist alternative ways of implementing a motion detector. What the traditional
models have in common is that they all consider the initial phase of motion detection – how
motion can be extracted from scratch using two successive frames. Here we will take another
approach and consider the case when motion has already been detected and a new frame is
presented. Instead of making a detailed and technical description of the model (which can be
found in the enclosed papers), I will invite the reader to make a thought-experiment.

Think of yourself as being a unit amongst other in a motion detecting and direction selective
network. Your task is to signal when motion occurs in a specific direction in your small visual
field. What would you do? The task seems nearly impossible, especially if you start to worry
about the aperture and correspondence problems. Well, I think you would cheat! Just think of
the temptation. You are surrounded by units that have similar tasks. If a pattern moves toward
you in the specific direction that you are obliged to detect, a lot of neighbouring units will signal
this motion before it reaches you. All that you have to do is to watch them carefully. When
they are signalling motion, then you simply await the pattern to appear in your visual field. As
you already know that it is moving in the proper direction you can, with confidence, signal an
occurance of motion and hope that no one will discover your false play.

A probable objection to this is that your trick will work fine as it is only one unit that is cheating
and one unit will not have any considerable impact on the network’s computation. Anyhow, I
will, a bit contra-intuitive, state that we can construct a motion detecting network where all the
units are cheaters. After all, the arrangement will work as long as an initial detection is put
into the system. A pattern that is once detected, will be propagated by the cheating units until it
disappears or halts. If the patterns halts, the units do get the information from their neighbours,
but the pattern will never appear in their visual field, and, consequently, they will not signal.

The remaining problem of initial detection can be ignored by the use of a simple trick. If
we at every step randomly select a small percentage of the units to signal irrespective of any
motion, they will falsely inform their neighbours that a moving pattern is approaching. What
will happen is that if a pattern really is approaching, the cheaters will propagate the information
and a detection of the moving pattern will take form in the network. If the falsely induced signal
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is not in correspondence with any moving pattern, no pattern will appear in the cheaters’ visual
fields and hence, the “detection” will not be propagated any further and disappear.

The idea of using false signals, or spontaneous activity, was inspired by a similar phenomenon
in biological systems. We find spontaneous activity in most neural tissues, that is, activity
without any obvious cause (Evarts, 1964; Burns et al., 1976; see also Freeman and Skarda,
1990). Furthermore, the spontaneous activity is especially evident in the 5:th layer of the
primary visual cortex where direction selective complex cells are situated (Heggelund, 1981;
Hubel, 1982). However, many researchers in the field think of spontaneous activity as not
contributing to the processes in the brain:

“Through dissections suggested by his anatomist colleagues, or with the aid of
anesthetic agents, the physiologist has minimized the intrusion of so-called ‘spon-
taneous’ electrical activity, in order that he may better study single-cell discharges
evoked by central or peripheral stimuli, or the characteristics of evoked potentials
elicited on an essentially silent electrical background. It is inherent in such an ap-
proach that so-called spontaneous activity is viewed as noncontributory in processes
of information transaction, or that it contribute in only minor or secondary ways.”
(Adey, 1970, p. 224)

Even if the above discussion summarises the underlying idea of the motion detecting system
presented in this work, the final system is a bit more complex. However, the model is still
very simple in comparison to models proposed by other researchers. There are no intermediate
units and the computation carried out by the individual units is indeed very simple. Still, its
performance is remarkable good, especially when the input is scattered with noise. For further
details, see the technical report in part III.

What regards the aperture and the correspondence problem, they are partly avoided by this
arrangement. A moving pattern is assumed to persist in moving in the same direction. Further,
a pattern can be reported to move in more than one direction simultaneously, one of which is
the actual direction. This is an effect of that each direction has it own set of indicating units.
To sharpen the detection of directions, some inhibitory connections between the sets of units
detecting different directions were introduced. Again, a more detailed picture can be obtained
from the technical report.

The correspondence problem is more easily avoided. As the previous motion direction is
known to the system, it only has to match these items with the new input frame. The network
also knows in what direction the pattern to match is expected to appear. If a pattern is moving too
fast, however, the network will be unable to propagate a detection. This limitation is discussed
in the technical report.

4 DISCUSSION

The neural network that constitutes the model of motion detection outlined above, exhibits some
interesting properties. First of all, the detections that take form in the system originate from
the internal spontaneous activity. The external input is no direct causation of the network’s
activity, but contributes only indirectly by supporting the internally generated percepts that are
in phase with the environment. We can say that the system is in resonance with the environment
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(Shepard, 1984) or that the perception is self-created (vf. Gedenryd, 1993), a feature unusual in
neural network – especially at such a basic level. In most other approaches, the input causes
(creates) the perception.

A second interesting property of the network is that not only is the representation distributed,
but also the computation. The task of computing the motion detection is not localized to any
unit at any level (cf. Douglas and Martin, 1991). It is distributed amongst the units of the
network. Furthermore, there exists no description in the network of how motion detection shall
be computed – it is instead an emergent property of the network.

A feature absent in the network is the influence of the unit activity on the underlying ar-
chitecture (Fig 11). In the simulations, all connections and strengths were pre-set from start.
This arrangement puts all the burden of design on the creator of the system. And, indeed, to
bring forth a functional network with all connection strengths in harmony was a difficult task –
especially since the system involves circular dependences (see the appended technical report).

External input➾
Unit

activity

Connection
strength

Spontaneous
activity

Figure 11: The network constituting the motion detecting model described in this work lacks the
influence of the unit activity on the connection strengths. An added feature, though, is the spontaneous
activity that is operating directly on the unit activity.

To reveal the cognitive burden from the designer, it would be desirable to make the network
self-organizing. This could be realised by some simple adaption of the connection strengths
in a way similar to what was suggested by Hebb (1949). The basic idea in his proposal is
that whenever two units are active simultaneously, their connection will be strengthened. In
addition, some way to decrease the strengths of the connections is also desirable. A way to
achieve this, is to let the strengths slowly decay as a function of time. Anyhow, with self-
organizing capabilities, the designer only has to create a crude system and leave the details to
the network itself to arrange. What is interesting to note is that a system along the line of the
proposed approach, would constitute a self-organizing neural network dealing with temporal
sequences.

The main reason that self-organization was not studied within the frame of this work was the
size of the network. The final system that constitutes the model consists of around 300 000
units and more than 6 million connections. If self-organization was to be introduced in this
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system, it would considerably increase the time consumed for each iteration in the network (as
each connection would require a more complex calculation). Further, the number of iterations
required for the connection strength configuration to converge would be very large. If one
considers that a simulation of 100 input frames takes about one hour on the available equipment4,
a simulation of the same system with self-organizing abilities would be unrealistic. Anyhow, it
can be interesting to speculate about such systems and how they can be applied to tasks other
than motion detection.

4.1 FROM RE-COGNITION TO COGNITION

Let us first consider what the model presented above would be like if it was given self-organizing
abilities. As for self-organizing networks in general, just any arbitrary architecture will not do.
Some tendency in the connections must be present. In the actual model, the initial architecture
should be such that there is a projection from the “input units” to the motion detection units.
Furthermore, this projection should preserve the topology from the input. In addition, the motion
detection units should be locally connected by excitatory and inhibitory connections.

When an input to such a system is presented, some activity will already be present due to
the spontaneous activity. This activity will then propagate through the lateral connections with
support from the input pattern. At first, the selectivity will be obscure, but (as each unit trusts
its neighbours) the units within a specific neighbourhood will converge to signal the same event.
We can expect several such neighbourhoods to emerge that will signal different events. Such an
organization is in fact found in the primary visual cortex where such neighbourhoods are called
columns (Hubel and Wiesel, 1963).

To generalize the approach is not as simple as just exchanging the input signal to some other
modality. Most probably, the architecture of the connections and their associated strengths
must also be modified. What these modifications should be, depends on which modality that
is connected, and what we expect the network to do. However, local lateral connection and
topological projections between areas are probably general principles to be employed.

In addition to generalize the system to use more external sources, we can also enrich the
system with internal modules. These modules will not be connected to external sources, but will
receive their input from other subsystems. For instance, the motion detection network could
project its signals to another system dealing with saccades5 or some other aspects of vision.

The greatest advantage of such a multi-module approach, is probably that the choice of
representations is totally determined by the system itself. There need not be a description of
the interface between two modules. How the representations are made by one subsystem will
simply be learned by the other systems that are connected to it. The alternative (to use fixed
interfaces) is a hazardous approach. There will always be a risk that certain information is lost
during the conversion to the interface because the designer did not anticipate a certain need of
communication (you cannot expect the unexpected). For this reason, it is beneficial to keep the
influence from external sources to a minimum. There is a price to pay for giving a system too
much freedom, however – it considerably increases the effort needed in order to interpret what
the system is doing and how well it is performing.

4A 32 MB SUN Sparcstation 2.
5A saccade is a quick movement of the eye.
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Another interesting aspect of this kind of neural networks is that the learning could be
described as an evolutionary process. This was the idea of the last of the enclosed papers, and I
will end this introduction by trying to make this idea a little bit clearer.

4.2 EVOLUTIONARY SYSTEMS AND FUTURE RESEARCH

Plasticity in neural networks does not necessarily have to be associated with learning. Even if
“[a]lmost every neural network model that has appeared to date is instructive.” (Anderson et al.,
1990, p. 296), a few research groups have lately adopted the idea to model the plasticity as an
evolutionary process (e.g., Changeux and Danchin, 1976; Changeux, 1983; Changeux et al.,
1984; Edelman, 1979, 1987; Calvin, 1987, 1988). The idea to use selection instead of learning
can be found as early as 1967 by Jerne, he wrote:

“Looking back into the history of biology, it appears that wherever a phenomenon
resembles learning, an instructive theory was first proposed to account for the
underlying mechanisms. In every case, this was later replaced by a selective
theory.” (Jerne, 1967, p. 204).

He mentions the evolution of the species, the resistance of bacteria to antibacterial agents, and
the antibody formation in the immune system as examples. Jerne then continuous:

“It thus remains to be asked if learning by the central nervous system might not also
be a selective process; i.e., perhaps learning is not learning either” (ibid).

Before I go into the detail of how a general neural network of the kind suggested in this work
can be understood as an evolutionary model, I will try to clearify what I mean by evolution. For
many people, evolution is the Evolution, i.e., the evolution of the species. But the principles of
its operation can be adopted by other systems as well (Balkenius and Pallbo, 1994).

First of all, evolution operates on a population of some kind. We will label the current
population in the system P, an individual in this set p and the set of all possible populations
as Π. Evolution can then be understood as a function Ph : Π � Π (from Phylogenesis), i.e.,
a transformation of a population into a new one (Fig. 12). We can write P � = Ph(P) where P �
is the new population generated. When the phylogenetic function is recursively applied to a
population, we will get an evolutionary process.

What characterizes an evolutionary system, in my view, is that a new population is generated in
relation to the current one, which should be contrasted with a random generation of populations.
The current population in the system is thus dependent on the history of the development. We
can say that the evolvement in these systems is accumulative. This feature is achieved by
dividing the function Ph in two pieces – a function of selection, S : Π � Π, and a function of
variation, V : Π � Π (Balkenius and Pallbo, 1994).

The selection mechanism selects a subset, PS = S(P), from the current population. This subset
is the set of individuals that will be considered and used in the creation of the new population.
The new population is generated by the variation mechanism, P � = V(PS). It is important that
this mechanism have some degree of uncertainty so that it can produce a new population that
is different from the previous one. Otherwise, there would be no evolvement of the population
and hence the process would not be an instance of evolution.
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Figure 12: Evolution is a process of creating a new, or changing an old, population under considerations
of the current one. The process can be divided into two pieces – one mechanism of selection and one
mechanism of variation.

A requirement that raise complications in the design of an evolutionary system, is that the
mechanisms of selection and variation must not be associated with a specific (fixed) population.
They cannot be constructed in order to direct the evolution toward a fixed goal, but must be
dependent on the current population itself. That is, the mechanisms of variation and selection
determine the transformation of the current population, but the current population will also de-
termine these mechanisms. This circular dependency is, in my view, the core of all evolutionary
systems.

Given such requirements, the task of creating an evolutionary neural network appears im-
possible. But I would like to remind the reader that we already have a circular dependency
present in a neural network – the one between the activity patterns and the configuration of the
architecture. What remains to be done, is to equip the system with generative capabilities. But
first, we need to identify the evolutionary components of the system.

In the class of neural network that have been under consideration, the population that we
want to evolve consists of representations. In the following we will distinguish between passive
and active representations. The active representations are those that are currently forming the
activity pattern of the units. The passive representations are those patterns that the network has,
as an effect of experience, the potential to activate. These representations are thus preserved
by the configuration of the connection strenghts. For these reasons, we will name this category
of networks structure supporting networks (SSN) to emphasize that we are interested in the
(representational) structures that reside in the network and that this structure is distinct from the
physical structure of the connection architecture.

The selected representations in structure supporting networks are the active representations.
Upon these patterns, spontaneous activity is added to constitute the mechanism of variation.
If the extra activity is “in phase” (i.e., not in conflict) with the current active and passive
representations, as well as with the perception (input), then this added activity will remain in the
system (i.e., be selected) and become a part of the current active representations. Spontaneous
activity not in phase with the rest of the system will quickly vanish and will not influence the
connection configuration that preseserves the passive representations. However, the spontaneous
activity that is selected, will remain in activity long enough to influence the passive knowledge.
Compare with the motion detection network, where the spontaneous activities that are in phase
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with the actual motion are preserved.
The activity patterns that will be selected are dependent on the current degree of evolvement

of the system, that is, its current population of passive representations. Therefore, the selection
mechanism will be dependent on the population it selects - a requirement of evolutionary
systems that was mentioned above. The same yields for the mechanism of variation. The
influence that the spontaneous activity will have on the active representation is dependent on the
active representation itself. The influence of the added activity will rely on how the activated
units are relating to the rest of the population. Furthermore, the complexity of this influence is
dependent on the complexity of the relations between the current population of representations.

To date, the study of the generalization of the method employed in the network of motion
detection is only at its early stages. The future research of the author will be directed to explore
the potentials of such systems and what implications it has for cognitive science when the brain
is viewed as a fast evolutionary system.
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A SIMULATION TOOLS

Throughout the development of the current model of motion detection, a number of computer
programs for various purposes have been constructed. Some are simulators of the model, or
versions of it, and others are dealing with the processing of the input and the results.

A.1 EARLY SIMULATORS

The first program that was created in this project was a simple real-time simulator of a motion
direction detector. Its purpose was to establish a platform to test and study the primal idea of
cheating neurons. This model included only an excitatory connection with the input, along with
excitatory lateral connections corresponding to the “cheating”. Furthermore, the simulation
involved only detection in one direction. As stimuli, a vertical bar (adjustable in width) was
used (Fig. 13).

The simulator was given a user interface that allows the user to change (during run-time) a
lot of the parameters affecting the simulation. The stimulus bar could be made to move either
right or left, or to become stationary. Also, the level of spontaneous activity could be adjusted.
Furthermore, the connection strengths as well as some aspects of the architecture could easily
be modified.

This experience from the simulations carried out by this device was very valuable in the design
of the final model. Not least since the simulator allowed the model to be tested in real-time,
which was not possible with the succedent simulator.

At this point, I also come to realize that the model could easily be generalized to the detection
of line orientations in an image as well. To try this hypothesis, a second simulator was created
by modifying the first (Fig. 14). In this simulator, two orientations of lines could be detected.
The stimuli used in the experiment, could be placed in four different orientation by the operator.

During the initial experiments with the model of line orientation detection, it became ev-
ident that inhibitory connections between the two different detection matrices were required.
Furthermore, temporal summation in the units6 turned out to significantly increase the acuity.

A.2 RECENT PROGRAMS AND TOOLS

As the initial simulations of the model were encouraging, a more realistic evaluation of the
model became desirable. For this purpose, simulations using video recordings were prepared.

First, a program capable of recording video sequences was created in collaboration with
Christian Balkenius. The program was simple, but allowed the operator to view what he was
recording (Fig. 15). Further, the need to view more than one video sequence at the time was
anticipated. For this reason, a program capable of presenting up to twenty such sequences
simultaneously was constructed (Fig. 16), again in collaboration with Christian Balkenius.

The next program developed was one that could filter the captured video sequences.7 The
images obtained from the camera was (for various reasons) not suitable as input to the model.
These filters used a video sequence as input and generated a new filtered video sequence as

6Temporal summation in principle mean that not all activation, or summed input, are lost between iterations.
7The purpose of the filter was to mimic the processes that occurs in the retina.
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Figure 13: A simple simulator of direction detection.

Figure 14: A simple simulator of line orientation detection.
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output. This sequence could then be viewed and evaluated using the display program mentioned
above.

Finally, the new simulator of the motion detection model was implemented. In opposition to
the earlier simulators, it was not given a graphical interface. The main reason for this is the size
of the network (it incorporated eight different directions and four different orientations), which
caused the simulation to be too slow to be used interactively. Instead, the simulator produced a
set of video sequences that could be viewed later using the graphical tools.

Figure 15: The interface of the recording program.

For practical matters, other tools were also created. These include one tool to invert the colour
of the frames, a second tool to cut off the tail of video sequences to make them shorter, a third
tool to restore corrupted headers of the video sequence files, a fourth tool to add noise to an
image, and, finally, one tool that merges two video sequences into one.

All programs have been written in SUN C. The graphical interfaces have been made with the
help of OpenWindow Developer’s Guide 1.1. The most difficult thing to implement was the
colour graphics which was not supported by the Developer’s Guide. This was needed in order
to display the gray-scale video recordings as well as the colour coded activity of the units in the
early simulators. My experiences is, however, that the effort was not in vain. A clear graphical
representation has considerably helped to visualize the simulation process. If I would have to
do it all again, I would probably not do it much differently from the way I did.
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Figure 16: A task-designed program was used in order to present up to twenty video sequences
simultaneously on the screen. Here various filters are evaluated.
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